Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).
Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).
Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).
Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).
Zhong, H.-S. et al. Experimental Gaussian boson sampling. Sci. Bull. 64, 511–515 (2019).
Bromley, T. R. et al. Applications of near-term photonic quantum computers: Software and algorithms. Quant. Sci. Technol. 5, 034010 (2020).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
Wootton, J. R. & Loss, D. Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018).
Dumitrescu, E. F. et al. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018).
Anschuetz, E., Olson, J., Aspuru-Guzik, A. & Cao, Y. Variational quantum factoring. In Int. Worksh. on Quantum Technology and Optimization Problems 74–85 (Springer, 2019).
Nielsen, M. A. & Chuang, I. Quantum Computation And Quantum Information (Cambridge Univ. Press, 2010).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).
Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615 (2015).
Arrazola, J. M. & Bromley, T. R. Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503 (2018).
Brádler, K., Friedland, S., Izaac, J., Killoran, N. & Su, D. Graph isomorphism and gaussian boson sampling. Preprint at https://arxiv.org/abs/1810.10644 (2018).
Brádler, K., Dallaire-Demers, P.-L., Rebentrost, P., Su, D. & Weedbrook, C. Gaussian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 98, 032310 (2018).
Schuld, M., Brádler, K., Israel, R., Su, D. & Gupt, B. Measuring the similarity of graphs with a Gaussian boson sampler. Phys. Rev. A 101, 032314 (2020).
Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).
Killoran, N. et al. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).
Arrazola, J. M., Kalajdzievski, T., Weedbrook, C. & Lloyd, S. Quantum algorithm for nonhomogeneous linear partial differential equations. Phys. Rev. A 100, 032306 (2019).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).
Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).
Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).
Lvovsky, A. Squeezed light. In Photonics Vol. 1 Fundamentals of Photonics and Physics 121–164 (Wiley, 2015)
Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).
Killoran, N. et al. Strawberry Fields: a software platform for photonic quantum computing. Quantum 3, 129 (2019).
Rosenberg, D., Lita, A. E., Miller, A. J. & Nam, S. W. Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005).
Qi, H., Brod, D. J., Quesada, N. & García-Patrón, R. Regimes of classical simulability for noisy Gaussian boson sampling. Phys. Rev. Lett. 124, 100502 (2020).
Aytür, O. & Kumar, P. Pulsed twin beams of light. Phys. Rev. Lett. 65, 1551 (1990).
Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).
Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963).
Sudarshan, E. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963).
Burenkov, I. A. et al. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement. Phys. Rev. A 95, 053806 (2017).
Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theor. Comput. 9, 143–252 (2013).
Quesada, N. Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 150, 164113 (2019).
Brádler, K., Israel, R., Schuld, M. & Su, D. A duality at the heart of gaussian boson sampling. Preprint at https://arxiv.org/abs/1910.04022 (2019).
Vernon, Z. et al. Scalable squeezed-light source for continuous-variable quantum sampling. Phys. Rev. Appl. 12, 064024 (2019).
Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).
Levine, Z. H. et al. Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066–2073 (2012).
Humphreys, P. C. et al. Tomography of photon-number resolving continuous-output detectors. New J. Phys. 17, 103044 (2015).
Vignat, C. A generalized Isserlis theorem for location mixtures of Gaussian random vectors. Stat. Probab. Lett. 82, 67–71 (2012).
Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quant. Electron. 24, 1–11 (2018).
Rahimi-Keshari, S., Ralph, T. C. & Caves, C. M. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039 (2016).
Gupt, B., Izaac, J. & Quesada, N. The Walrus: a library for the calculation of hafnians, Hermite polynomials and Gaussian boson sampling. J. Open Source Softw. 4, 1705 (2019).
Caianiello, E. R. On quantum field theory–I: explicit solution of Dyson’s equation in electrodynamics without use of Feynman graphs. Il Nuovo Cimento 10, 1634–1652, (1953).
Lund, A. P. et al. Boson sampling from a gaussian state. Phys. Rev. Lett. 113, 100502 (2014).
Brod, D. J. & Oszmaniec, M. Classical simulation of linear optics subject to nonuniform losses. Quantum 4, 267 (2020).
Sharp, T. & Rosenstock, H. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964).
Sawaya, N. P., Paesani, F. & Tabor, D. P. Near-and long-term quantum algorithmic approaches for vibrational spectroscopy. Preprint at https://arxiv.org/abs/2009.05066 (2020).
Mebel, A., Hayashi, M., Liang, K. & Lin, S. Ab initio calculations of vibronic spectra and dynamics for small polyatomic molecules: Role of duschinsky effect. J. Phys. Chem. A 103, 10674–10690 (1999).
Müller, C. W., Newby, J. J., Liu, C.-P., Rodrigo, C. P. & Zwier, T. S. Duschinsky mixing between four non-totally symmetric normal coordinates in the s 1–s 0 vibronic structure of (E)-phenylvinylacetylene: a quantitative analysis. Phys. Chem. Chem. Phys. 12, 2331–2343 (2010).
"Many" - Google News
March 03, 2021 at 11:20PM
https://ift.tt/3c3E0j0
Quantum circuits with many photons on a programmable nanophotonic chip - Nature.com
"Many" - Google News
https://ift.tt/2QsfYVa
Shoes Man Tutorial
Pos News Update
Meme Update
Korean Entertainment News
Japan News Update
Bagikan Berita Ini
0 Response to "Quantum circuits with many photons on a programmable nanophotonic chip - Nature.com"
Post a Comment